Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cloud-based quantum computers have become a re- ality with a number of companies allowing for cloud-based access to their machines with tens to more than 100 qubits. With easy access to quantum computers, quantum information processing will potentially revolutionize computation, and superconducting transmon-based quantum computers are among some of the more promising devices available. Cloud service providers today host a variety of these and other prototype quantum computers with highly diverse device properties, sizes, and performances. The variation that exists in today’s quantum computers, even among those of the same underlying hardware, motivate the study of how one device can be clearly differentiated and identified from the next. As a case study, this work focuses on the properties of 25 IBM superconducting, fixed-frequency transmon-based quantum computers that range in age from a few months to approximately 2.5 years. Through the analysis of current and historical quantum computer calibration data, this work uncovers key features within the machines, primarily frequency characteristics of transmon qubits, that can serve as a basis for a unique hardware fingerprint of each quantum computer.more » « less
-
Trapped ions (TIs) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies, featuring high qubit quality, coherence time, and qubit connectivity. However, current TI systems are small in size and typically use a single trap architecture, which has fundamental scalability limitations. To progress toward the next major milestone of 50--100 qubit TI devices, a modular architecture termed the Quantum Charge Coupled Device (QCCD) has been proposed. In a QCCD-based TI device, small traps are connected through ion shuttling. While the basic hardware components for such devices have been demonstrated, building a 50--100 qubit system is challenging because of a wide range of design possibilities for trap sizing, communication topology, and gate implementations and the need to match diverse application resource requirements. Toward realizing QCCD-based TI systems with 50--100 qubits, we perform an extensive application-driven architectural study evaluating the key design choices of trap sizing, communication topology, and operation implementation methods. To enable our study, we built a design toolflow, which takes a QCCD architecture's parameters as input, along with a set of applications and realistic hardware performance models. Our toolflow maps the applications onto the target device and simulates their execution to compute metrics such as application run time, reliability, and device noise rates. Using six applications and several hardware design points, we show that trap sizing and communication topology choices can impact application reliability by up to three orders of magnitude. Microarchitectural gate implementation choices influence reliability by another order of magnitude. From these studies, we provide concrete recommendations to tune these choices to achieve highly reliable and performant application executions. With industry and academic efforts underway to build TI devices with 50-100 qubits, our insights have the potential to influence QC hardware in the near future and accelerate the progress toward practical QC systems.more » « less
An official website of the United States government
